Optical switching
References

Keshav doesn’t cover this (except brief reference on p. 15)

Other courses: e.g. ELEC9350/9355

Overviews:

• Cisco’s Fundamentals of DWDM Technology

LightReading.com – Industry news
References about specific technologies

Outline

Optical components
• fibres
• amplifiers
• transmitters, receivers

Optical switching overview

Wavelength-routed networks
• Optical demultiplexing / filtering
• Switch construction
• Wavelength assignment problem & conversion

All-wavelength switching (MEMS)

Photonic packet switching

Dealing with contention
Optical fibre

Fibre consists of:
- Glass (silica) core: 2 - 125μm in diameter.
- Glass cladding:
 Thicken fibre to make it less fragile.
 \(n_{\text{cladd}} < n_{\text{core}} \Rightarrow \text{internal reflection} \)
- Plastic jacket:
 Protection

Rays ("modes") of light are confined to fibre by total internal reflection

Using a thin core restricts propagation to one mode only. Such "single mode fibre" offers higher data rates/distance than multi-mode fibre (but is more expensive)
Evaluation of optical fibre

- Fibre doesn’t conduct electricity
 - ✗ Often need separate cable to provide power to devices.
 - ✓ Good for insulating, e.g.
 - ✓ Protect computer from lightning striking outdoors antenna by connecting with fibre
 - ✓ Comms cables won’t spread high voltages from failing machines in factories
 - ✓ Immune to electromagnetic noise
 - ✓ Low attenuation for wide bandwidth …
Fibre – Attenuation in silica

- 0.85μm band (cheap LEDs)
- 1.3μm and 1.5μm bands (lasers)

Approximate wavelengths of visible light:
- 167 THz
- 121 THz

Bandwidth of tens of THz (tens of Tb/s with simple modulation)

Monochrome figure from Cisco http://www.cisco.com/univercd/illus/4/87/48087.gif
Copyright © 2006 Tim Moors
Erbium Doped Fibre Amplifiers (EDFAs)

- Amplify (30dB+) signals (including noise, no regeneration)
- Cover a broad bandwidth, e.g. 35nm

Operation: pump @ 980 or 1480nm, signal @ 1525-1560nm

Switching relevance:
- Many fabrics exhibit high loss ⇒ amplify with EDFA after switching
- EDFA forms a basic electronically-controlled on/off gate for switching
- EDFAs are the original “transparent” all-optical network element for trans-oceanic links ⇒ motivate all-optical networks & all-optical switching.
Mismatch between fibre and transceivers

40Tb/s of fibre $>>$ 10Gb/s optoelectronics (today)
+ fibre is *often* scarce
\Rightarrow use multiple optoelectronic systems tx/rx @ different λs
\Rightarrow **Wavelength Division Multiplexing**
(optical equivalent of FDM in the RF domain)

Wavelengths = “lambdas” (λ)
(sometimes spelled lamda)
WDM technology

DWDM = Dense WDM, e.g. 0.8nm spacing ⇒ about 64λs (Coarse DWM: 12λs, Ultra Dense WDM >100λs)

Example of state of the art [Lucent press release, March 2002]:
64 channels @ 40Gb/s (2.56Tb/s) over 4000km

Tunable transmitters (multiple or tunable laser)
 Tuning times range from ns (Distributed feedback) to ms (mechanical/acousto)

Tunable receivers – Burst mode can synchronize quickly, unlike continuous mode.

Figure from Cisco
Broadcast and select network using tunable tx/rx

Tunable lasers Broadcast medium Tunable filters Photodiodes

✗ poor signal power because of broad splitting
Outline
Optoelectronic networks

- Simplest use of optics to networking merely involves replacing wired links with fibre. Where link joins switch, signal is translated between optical and electronic forms.

- Expensive optoelectronic parts are replicated
- Electronics (particularly energy flow: power in, heat out) limits switch throughput
Motivation for all-optical networks

Benefits:
- **High transmission speed**
 (switching speed may not be as impressive, e.g. Gb/s throughput on each port, but reconfiguration (changing port mappings) only once per ms)
- Eliminate optoelectronics from network
- Low cost network
- Transparency: Payload rate and format can change (with OE progress) without changing network elements.
 - Network must recognize control rate and format for packet switching.
 - Particularly for trans-oceanic cables – original motivation for EDFA amplifiers

Costs:
- Add optical switching equipment
- Analog: Signals are amplified, not regenerated
- Error rate monitoring is hard
Where are optical networks used?

LANs: Rarely is optical switching needed (exception: CERN, NSA?!)

Access networks: Passive Optical Networks (PONs) (see next slide)

Metropolitan Area Networks
- Traditionally SDH – optoelectronic rings (s.t. can adapt around single failure)
- Uncertainty about provisioning rings (e.g. how much BW needed?) can be accommodated by subdividing rings adding lambdas to serve new rings.

Long haul (e.g. inter-city): Optical transmission preferable because of high bandwidth for low attenuation.

Core networks (e.g. switch in Sydney switching traffic between Melbourne, Canberra, Brisbane):
- High transmission speeds
- But reconfiguration needn’t be frequent.
Passive Optical Networks (PONs)

Why?: Higher rates to subscribers than wire

Options:

- Individual fibres from Exchange to N subscribers
 - N fibres to Exchange (Central Office – CO)
 - $2N$ transceivers
- Fibre to the curb, switch to fibres to subscribers
 - 1 fibre to Exchange
 - $2N$+2 transceivers
 - Either optoelectronic switch (may fail, expensive optoelectronic tx/rx) or photonic switch (advanced technology)
- ✓ Fibre \rightarrow curb + passive optical splitter to subs
 - 1 fibre to Exchange
 - N+1 transceivers
 - Power loss from splitting limits fan-out; need to deal with shared medium (security, MAC)

Terms: Fibre To The x (FTTx): Home, Building, Premises, Curb, ...

Image from slides by Vijay Sivaraman
For more, see www.ponforum.org
Forms of optical switches

OADM = Optical Add-Drop Multiplexer
OXC = Optical Cross-Connect

Figure from LightReading

Copyright © 2006 Tim Moors
Optical switching technologies

MEMS = MicroElectroMechanical Systems

Figure from LightReading
How the optical domain differs

- High-rate transmission

- Processing
 e.g. optical address matching

- Buffering

Re-evaluate decisions made in electronic networks

Electronic: Packet switching uses processing (routing decisions) to save transmission capacity
Optical: Circuit switching is currently more cost effective

Electronic: Route along shortest path (to save transmission) and buffer when \(\exists \) contention on that path (buffering is cheap).
Optical: Deflection routing: Use longer path to avoid buffering
Outline
Wavelength routed networks

- Motivated by WDM – not all wavelengths may have same destination.
- Directing signal propagation alleviates power problems of broadcast-and-select network.
- Components are also called “wavelength selective”
Optical (de)multiplexing

Multiplexing is trivial: Combine signals by splicing fibres together
“Optical Add-Drop Multiplexer” (OADMs):

• Drop wavelengths (demux)
• Add wavelengths (mux)
• Many access ports; few wavelengths change
Static demultiplexing ...

Static demultiplexers: Physical configuration assigns λs to ports. Generally require precise physical alignment
- need to assess thermal stability
- might achieve precision by using photolithography

... using refraction:

Figure from Cisco
... using diffraction

Diffraction grating

Figure from Cisco
... using diffraction grating and waveguide

Diffraction grating with waveguide

“Arrayed Waveguide Grating” (AWG) aka “optical waveguide router”!
up to 250 ports

Input cavity: diffracts light into waveguides
Waveguides have differing lengths ⇒ delays
Delayed waveforms interfere in output cavity
Position output ports @ points of max. interference
... using interference

Interference filters transmit light of one wavelength, and reflect others.

☑ Good thermal stability (variation of vertical/horizontal dimensions handled by filters having vertical range) and isolation between channels, at moderate cost.

✗ High loss, e.g. (yellow) wavelength that is reflected many times.
Controllable refractive indices

Control the refractive index of the medium by applying:

- **Electric field** (electro-optic)
 - e.g. Lithium Niobate ($LiNbO_3$) or liquid crystal
 - ✔ ns switching times
 - ✗ substantial loss

- **Sound** (acousto-optic), 10us switching times

- **Heat** (thermo-optic), ms switching times
 - Silica has lower optical loss than polymer, but requires more heat and conducts heat more (⇒ switch requires more space)

Form basic switching element using interferometers...
Electro/Acousto/Thermo-optic switches

Mach-Zehnder interferometer:
Controllable delay element determines relative phase of combined wavelengths.
180° phase difference ⇒ filtered out

Drawbacks:
✗ Few ports (2×2)
✗ Crosstalk between outputs
Building a switch from filters/gates

Power budget:
• Each input is split between n outputs (like B&S) ($n=2$ in this example)
• Combiner has only 1 active input ⇒ readily amplify using EDFA
Wavelength assignment problem

Can concurrently use the same wavelength in spatially separate areas of the network

Q: What \(\lambda \) should be used for each lightpath?

A: Complex optimisation problem.

Wavelength assignment can be simplified with expensive wavelength converters.
Wavelength converters

Primitive: Perform opto-electronic-opto conversion, and use different λ for output laser

Better: Electrical signal directly modulates laser

Best: Optical conversion using coherence effects
- From non-linear response of medium in the presence of multiple waves.
- *e.g.* Four-Wave-Mixing, Difference Frequency Generation
Outline
MicroElectroMechanical Systems (MEMS)

It’s all done with mirrors…

Mechanical ⇒ switching time $\propto 4 \sqrt{I} \Rightarrow \text{ms switching times}$
(too slow for burst or packet switching)
Loss of approx 1.25dB / mirror

Photos from Lucent
MEMS

Implemented on silicon using photolithography technology
✓ precise positioning of mirrors
✓ can integrate mechanical system with electronics
✓ density should advance with progress in photolithography technology (driven by VLSI)
Current densities of 256-1024 mirrors

“We have built MEM mirrors on an 8-in. wafer with a million MEM mirrors on it, each individually moveable”
– Jeffrey Jaffe, president of research and advanced technologies at Bell Labs in J. Ribeiro: 'Bell Labs grapples with VoIP, open-source', Jan. 05
MEMS switches

2D

3D

Figures from Chu02

Copyright © 2006 Tim Moors
Other switching technologies

- Bubble (see Agilent Video)
- Liquid crystal attenuators/switches
- Liquid crystal gratings
- Holograms

- Wavelength-selective technologies
 - electro/thermo/acousto-optics
Outline
Electro-optic† packet switching

Payload travels over a “lightpath” from source to destination; no optoelectronic conversion within network switching elements.

Control information *may* incur optoelectronic conversion, may even flow on auxiliary electronic control network.

Figure from Blumenthal94

† Distinct from optoelectronic
Outline
Ways to deal with contention

- Time domain: optical buffering …
- Space domain: deflection routing …
- Frequency domain: Wavelength conversion
 - Creates more options, but may still have contention for specific frequency on output port.
Optical buffering

Long loops of fibre form delay lines

How long?

Electricity travels a foot in a nanosecond.
– G. Hopper

In vacuum $v_0 = 3 \times 10^8$

In silica: slower than in a vacuum: $n_{SO_2} = 1.5$,

$v_{SO_2} = 2 \times 10^8 m/s$

e.g. 1500B Ethernet frame (12kb) @ 1Gb/s (1ns/b)

= 12us delay = 2.4km

Information continuously physically moves (c.f. electronic buffers)

Memory provides *sequential*, not random, access

But that’s fine for queueing/buffering

Photo from www.go4fiber.com/bargain/image/products/50ss.jpg
Optical buffering: Problems

- Attenuation in delay lines
- Complexity
- Some say: unnecessary – modeled on electronic networks
Optical buffer implementation

Fibre delay line
× Capacity ∝ length ∝ loss

Programmable fibre delay line
✔ Enables control of holding time.
× Loss from splitting signal
(Time-slot-interchange switch)

Active recirculating delay line
✔ Enables control of holding time.
× Amp noise limits recirculations
Deflection routing

Route some inputs (●) on shortest path
Deflect others (■) to other outgoing ports (longer paths)

Links between switches effectively become passive delay line buffers for deflected packets

Often prioritise packets:
• Better service for originally high priority packets,
• Escalate priority after deflect s.t. not deflected endlessly.

Assume that the ports are bidirectional but can only support one flow in either direction.
Deflection routing: Evaluation

✗ Reduces network throughput because packets take longer paths

Manhattan street network (regular mesh) & deflection: 55-70% of throughput with infinite buffering.

✗ May deflect back onto short path ⇒ mis-sequence packets

✓ Deflecting towards source further increases path length, but creates backpressure & may provide congestion control
Summary of optical switching

- Switching at the “physical” layer
- Fibre enables massive transmission capacity, but optical processing and buffering are difficult.
- WDM allows many flows to share one fibre
- Various types of demultiplexers based on refraction, diffraction, interference
- MicroElectroMechanical Systems: Slow reconfiguration, but no optoelectronic conversion bottleneck
- Packet switching is possible, but is it out of context?