Chapter 4
Network Layer

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:
- If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!)
- If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2004
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking:
A Top Down Approach
Featuring the Internet,
3rd edition.
Jim Kurose, Keith Ross
Addison-Wesley, July 2004.
Chapter 4: Network Layer

Chapter goals:

- understand principles behind network layer services:
 - routing (path selection)
 - dealing with scale
 - how a router works
 - advanced topics: IPv6, mobility
- instantiation and implementation in the Internet
Chapter 4: Network Layer

4.1 Introduction

4.2 Virtual circuit and datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing

4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP

4.7 Broadcast and multicast routing
Network layer

- transport segment from sending to receiving host
- on sending side, encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- Router examines header fields in all IP datagrams passing through it
Key Network-Layer Functions

- **forwarding**: move packets from router's input to appropriate router output

- **routing**: determine route taken by packets from source to dest.

Routing algorithms

analogy:

- **routing**: process of planning trip from source to dest
- **forwarding**: process of getting through single interchange
Interplay between routing and forwarding

Routing algorithm

<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet's header: 0111

Network Layer 4-20
Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths
Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011111 11111111 otherwise 11001000 00010111 00011111 11111111</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

4 billion possible entries
Longest prefix matching

<table>
<thead>
<tr>
<th>Prefix Match</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples

DA: 11001000 00010111 00010110 10100001 Which interface?

DA: 11001000 00010111 00011000 10101010 Which interface?
IP Addressing: introduction

- **IP address**: 32-bit identifier for host, router interface
- **interface**: connection between host/router and physical link
 - router’s typically have multiple interfaces
 - host may have multiple interfaces
 - IP addresses associated with each interface

```
223.1.1.1 = 11011111 00000001 00000001 00000001
```

223 1 1 1 1
Subnets

IP address:
- subnet part (high order bits)
- host part (low order bits)

What's a subnet?
- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets
Subnets

Recipe

- To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a **subnet**.

Subnet mask: /24
Subnets

How many?

Network Layer 4-30
IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: `a.b.c.d/x`, where `x` is # bits in subnet portion of address

```
11001000  00010111 00010000  00000000
```

```
200.23.16.0/23
```
IP addresses: how to get one?

Q: How does host get IP address?

- hard-coded by system admin in a file
 - Wintel: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- **DHCP:** Dynamic Host Configuration Protocol: dynamically get address from as server
 - “plug-and-play”
 (more in next chapter)
IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’s address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>
Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing information:

Organization 0
- 200.23.16.0/23

Organization 1
- 200.23.18.0/23

Organization 2
- 200.23.20.0/23

Organization 7
- 200.23.30.0/23

Fly-By-Night-ISP

ISPs-R-Us

Internet

"Send me anything with addresses beginning 200.23.16.0/20"

"Send me anything with addresses beginning 199.31.0.0/16"
Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

Organization 0
200.23.16.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

Organization 1
200.23.18.0/23

Fly-By-Night-ISP

“Send me anything with addresses beginning 200.23.16.0/20”

ISPs-R-Us

“Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23”

Internet
IP addressing: the last word...

Q: How does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned Names and Numbers

- allocates addresses
- manages DNS
- assigns domain names, resolves disputes
The following slides about DHCP are from the 2nd edition of Kurose and Ross - omitted from the 3rd edition?
DHCP: Dynamic Host Configuration Protocol

Goal: allow host to dynamically obtain its IP address from network server when it joins network
- Can renew its lease on address in use
- Allows reuse of addresses (only hold address while connected and “on”)
- Support for mobile users who want to join network (more shortly)

DHCP overview:
- Host broadcasts “DHCP discover” msg
- DHCP server responds with “DHCP offer” msg
- Host requests IP addr.: “DHCP request” msg
- DHCP server sends addr.: “DHCP ack” msg
DHCP client-server scenario

arriving DHCP client needs address in this network
DHCP client-server scenario

DHCP discover

DHCP server: 223.1.2.5

src: 0.0.0.0, 68
dest.: 255.255.255.255, 67
yiaddr: 0.0.0.0
transaction ID: 654

DHCP offer

src: 0.0.0.0, 68
dest.: 255.255.255.255, 67
yiaddr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request

src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

67 = IP protocol number for DHCP servers
68 = IP protocol number for DHCP clients
yiaddr = your internet address