LAN interconnection: Bridges
Outline

- Why interconnect LANs?
- Hubs
- Bridges
 - Remote bridges
 - Backbone networks
 - Source and transparent routing
 - Self learning
 - Spanning Tree
 - Between networks of different types
 - Switches
- Bridges vs routers
- Virtual LANs
Interconnecting LAN segments

Reasons for interconnection:
- Increase geographical span
- Increase number of stations
- Connect LANs from different organisations
- Isolate stations and their traffic:
 - Performance
 - Fault tolerance
 - Security

Interconnection devices:
- Hubs
- Bridges
- Switches
 - Remark: switches are essentially multi-port bridges.
 - What we say about bridges also holds for switches!
Evolution of LAN topologies

1980s

Coaxial cable snakes its way past computers.
× Maintenance is complicated by needing broad physical access.
× Data cable is distinct from twisted pair used for phones.

Early 1990s

Computers connected using twisted pair to wiring closet.
× Hub in closet provides shared medium.

Late 1990s

Switches become cheaper, and replace hubs in closets, improving performance.
Point-to-point links no longer need MAC.

Later: Links become wireless and topology returns to original distributed shared medium!
Evolution of LAN interconnection

1980s

"Bridges" have few (e.g. 2) ports.
"Remote bridges": ports may be widely separated (e.g. by dial-up link)

Early 1990s

Bridge ports become cheaper, and hubs can be replaced by "multi-port bridges" in wiring closet, transparently wrt users.

Late 1990s

Ports become so cheap (relative to management costs) that all users can have their own port.
"Switches": Products with many high-speed ports
Interconnecting with hubs

- Backbone hub interconnects LAN segments
- Extends max distance between nodes
- But individual segment collision domains become one large collision domain
 - if a node in CS and a node EE transmit at same time: collision
- Can’t interconnect 10BaseT & 100BaseT
Outline
Bridges

- **Link layer device**
 - stores and forwards Ethernet frames
 - examines frame header and **selectively** forwards frame based on MAC dest address
 - when frame is to be forwarded on segment, uses CSMA/CD to access segment
2 types of bridges

Transparent bridges:
- End-stations don’t need to know about bridges.
- Bridges act independently of end-stations.
- Most common form, especially with Ethernet.

Source routing bridges:
- Less transparent: Bridges preserve LAN service, but end-stations need to know about them: *Source specifies route through bridges by identifying each bridge that the frame must traverse* on the path to the destination.
- Less common, used with Token Ring.

We’ll focus on transparent bridges.
Some bridge features

- Isolates collision domains resulting in higher total max throughput
- Limitless number of nodes and geographical coverage†
- Transparent
 - hosts are unaware of presence of bridges
- plug-and-play, self-learning
 - bridges do not need to be configured
- Can connect different Ethernet types

† But can be inefficient due to suboptimal paths and volume of broadcast & flooded traffic increasing with number of nodes ⇒ routers.
Bridges: traffic isolation

Bridge installation breaks LAN into LAN segments. Bridges filter frames:

- same-LAN-segment frames not usually forwarded onto other LAN segments
- segments become separate collision domains
Remote Bridges

Remote bridges can be used to interconnect distant LANs.
Interconnection without backbone

- Not recommended for two reasons:
 - single point of failure at Computer Science hub
 - all traffic between EE and SE must path over CS segment
Backbone configuration

Recommended!

How does the bridge determine to which LAN segment to forward a frame?
Outline
Self learning

- A bridge has a bridge table
- entry in bridge table:
 - (Node LAN Address, Bridge Interface, Time Stamp)
 - stale entries in table dropped (TTL can be 60 min)
- bridges **learn** which hosts can be reached through which interfaces
 - when frame received, bridge “learns” location of sender: incoming LAN segment
 - records sender/location pair in bridge table
Filtering/Forwarding

When bridge receives a frame:

index bridge table using MAC dest address
if entry found for destination
 then{
 if dest on segment from which frame arrived
 then drop the frame
 else forward the frame on interface indicated
 }
else flood

forward on all but the interface on which the frame arrived
Bridge example

Suppose C sends frame to D and D replies back with frame to C.

- Bridge receives frame from C
 - notes in bridge table that C is on interface 1
 - because D is not in table, bridge sends frame to interfaces 2 and 3
- frame received by D
Bridge Learning: example

- D generates frame for C, sends
- bridge receives frame
 - notes in bridge table that D is on interface 2
 - bridge knows C is on interface 1, so selectively forwards frame to interface 1
Bridges Spanning Tree

• for increased reliability, desirable to have redundant, alternative paths from source to dest
• with multiple paths, cycles result - bridges may multiply and forward frame forever
• solution: organize bridges in a spanning tree by disabling subset of interfaces
Spanning Tree Bridges (2)

(a) Interconnected LANs. (b) A spanning tree covering the LANs. The dotted lines are not part of the spanning tree.

Fig. 4-44
Outline
Ethernet Switches

Essentially a multi-interface bridge
layer 2 (frame) forwarding, filtering using LAN addresses

Switching: A-to-A’ and B-to-B’ simultaneously, no collisions
large number of interfaces often: individual hosts, star-connected into switch
 o Ethernet, but no collisions!
Not an atypical LAN (IP network)
Outline
Bridges vs. Routers

- both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - bridges are link layer devices
- routers maintain routing tables, implement routing algorithms
- bridges maintain bridge tables, implement filtering, learning and spanning tree algorithms
Routers vs. Bridges

Bridges + and -
+ Bridge operation is simpler requiring less packet processing
+ Bridge tables are self learning
- All traffic confined to spanning tree, even when alternative bandwidth is available
- Bridges do not offer protection from broadcast storms†

† “Broadcast storms” occur when broadcast traffic is continuously sent. e.g. A misbehaving host continuously transmits broadcast traffic. e.g. Poor protocols that broadcast responses to broadcast traffic, leading to escalation.
Routers vs. Bridges

Routers + and -
+ arbitrary topologies can be supported, cycling is limited by TTL counters (and good routing protocols)
+ provide protection against broadcast storms
- require IP address configuration (not plug and play)
- require higher layer packet processing

• bridges do well in small (few hundred hosts) while routers used in large networks (thousands of hosts)
Summary comparison

<table>
<thead>
<tr>
<th></th>
<th>hubs</th>
<th>bridges</th>
<th>routers</th>
<th>switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic isolation</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>plug & play</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>optimal routing</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>cut through</td>
<td>yes</td>
<td>no†</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

† Bridges can also offer cut-through, except the early ones didn’t.
Chapter 5
Data Link Layer

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers). They’re in powerpoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:
- If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!)
- If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2002
J.F Kurose and K.W. Ross, All Rights Reserved